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Abstract –  

Modular integrated construction (MiC) is a most 

advanced off-site technology. In a MiC project, it is 

critical but challenging to install prefabricated 

volumetric modules efficiently and safely, as they are 

much heavier and larger than conventional 

construction components and materials. However, the 

current crane-lift executions are heavily reliant on 

operators’ subjective judgement, which turns out to 

be time-consuming and error-prone, most notably 

when jobsites are congested. Automatic crane-lift 

path planning has been regarded as an important 

research topic for addressing this problem. 

Nevertheless, most previous studies did not consider 

the MiC-specific features of a crane lift such as 

correlation between module weight and crane trolley 

movement. Therefore, this paper aims to propose a 

modified particle swarm optimization (PSO) 

algorithm to automatically conduct crane-lift path 

planning for high-rise MiC. A new fitness function 

and three auxiliary engines are designed for executing 

the proposed PSO path planner. This novel algorithm 

is validated using a real-life MiC project. The findings 

reveal that the optimized algorithm outperforms 

existing metaheuristics in terms of convergence 

characteristics and path smoothness. A collision-free 

crane-lift path can be worked out with a small 

population size and a few iterations. Practically, this 

paper should facilitate safe and efficient project 

delivery of high-rise MiC. Scientifically, the paper 

contributes to the theoretical development of smart 

and automated technologies and algorithms in 

construction. 
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1 Introduction 

 Modular integrated construction (MiC) represents 

the highest level of off-site construction [1]. In a typical 

high-rise MiC project, multiple heavy and large-sized 

prefabricated volumetric modules are manufactured first 

in factory followed by installation on site. Hoisting those 

hefty units relies on the stringent deployment of tower 

cranes, which occupies most of crane-lift tasks [2]. 

However, it is challenging to get them installed 

efficiently and safely from confined storage yards to the 

target position, especially in high-density and congested 

metropolitans such as Hong Kong. Neitzel et al. [3] 

mentioned that more than 30% of construction and 

maintenance casualties resulted from cranes. Tam and 

Fung [4] pointed out that the lack of transferable skills 

and the fatigue of crane operators are the critical reasons 

leading to accidents. In high-rise MiC projects, crane 

practitioners are required to have higher professional 

skills and should pay closer attention to collision 

identification. Nevertheless, it is easy to cause time delay 

and safety hazards when the hoisting executions depend 

on operators’ subjective behaviors. 

Computer-aided path planning has become a popular 

research topic to assist crane drivers in identifying the 

optimal crane-lift path. However, the literature reveals 

that existing approaches are highly homogeneous. 

Genetic algorithms [5-8], for instance, gain the most 

popularity in metaheuristics. The existing solutions also 

seldom consider the velocities of the mechanism 

transmission and the strategies of crane operation, which 

resulted in impractical lifting trajectory with redundant 

turns and twists [9]. In addition, other algorithms with 

high performance such as particle swarm optimization 

(PSO) have not attracted researchers’ attention in the 

field of path planning. Moreover, few studies conduct 

path planning for high-rise MiC considering the modular-

specific features such as large-sized and heavy modules.  

To address the challenges and fill the knowledge gaps, 

this paper aims to propose a modified PSO algorithm to 

automatically conduct crane-lift path planning. Based on 

the existing PSO algorithm, a new fitness function is 

devised with three significant indicators i.e., overall 

hoisting time, total movement distance and the collision 

penalty mechanism. Also, three auxiliary engines, i.e., 

crane configuration engine, model regeneration engine 

and collision detection engine are used for PSO execution. 

Following this introduction section, Section 2 

reviews the crane-lift path planning methods, the 

published metaheuristics and PSO related research. 

Section 3 sheds light on the proposed system architecture 

and its development. Section 4 verifies the proposed 
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method using a real-life MiC project. The last two 

sections are presented for discussion and conclusions, 

respectively. 

2 Literature Review 

2.1 Overview of Crane-lift Path Planning 

Algorithms 

Finding a collision-free crane-lift path is a scorching 

research topic among various countries and regions [5-

7,10], like India [6], Singapore [7,8], Canada [10], etc. It 

normally takes two steps to achieve this goal. The first is 

to transform the work space to the configuration space, 

in which the information from environmental obstacles 

and crane’s particulars can be well extracted. The other 

is to screen out or design a proper algorithm to match 

specific crane-lift scenarios. Researchers have invested 

tremendous time and energy in exploring adaptable, 

robust and highly productive algorithms for crane-lift 

path planning. Those algorithms can be divided into three 

categories, namely, node-based methods, sampling-

based methods, and meta-heuristic methods.  

Node-based methods, including Dijkstra’s and A*, 

have a powerful performance in finding a high-quality 

and collision-avoidance lifting path. Nevertheless, their 

shortcoming is obvious for the high time complexity, 

particularly in complicated job sites [11].  

With respect to sampling-based methods, rapidly 

exploring random tree with its variants has been widely 

adopted. However, the lifting trajectory is prone to more 

turns and twists, enhancing crane drivers’ manipulation 

complexity [10], although there have been some 

improvements recently [9]. 

Meta-heuristic methods contribute a lot to crane-lift 

research. Genetic algorithms (GAs), ones of the most 

classical metaheuristics, have attracted huge attention 

over the past two decades. Researchers from Indian 

Institute of Technology first started GAs’ application to 

lifting path planning. They initially designed a simple 

GA model in 2D configuration space for two degrees of 

freedom (DOFs) crane manipulators [5]. Thereafter, Ali 

et al. [6] used GA for the dual-crane path planning. Cai 

et al. [7] improved the fitness function and altered the 

evolutionary strategies based on Ali’s research. To find 

the erection paths efficiently, their algorithm was 

implemented via parallel computing on graphic 

processing units, and then they applied it into four DOFs 

tower cranes [8]. Although GAs have been widely used 

among various disciplines, it should not be treated as the 

only option and it cannot always perform best, compared 

to other EAs. Wang et al. [12] tried to use ant colony 

optimization (ACO) algorithm for three DOFs mobile 

cranes, but their research was at the preliminary stage and 

the lifting trajectory was hard to manipulate. 

2.2 Particle Swarm Optimization (PSO) 

Another classical evolutionary algorithm is PSO, 

which was coined by Kennedy and Eberhart [13] in 1995, 

inspired by the school of birds and fish. Each particle in 

the particle swarm represents a possible solution to a 

problem. Through the simple behavior of individual 

particles and the information interaction within the 

swarm, problem-solving intelligence is realized. It has 

been demonstrated and verified that PSO can perform 

better in a cheaper, simpler, and faster way than other 

intelligent algorithms [13,14].  

In respect to the construction industry, Zhang and 

Xing [15] utilized PSO together with a fuzzy-integrated 

approach to find the best solution for addressing the time-

cost-quality tradeoff problem. PSO served as a useful 

tool for construction layout planning, like unequal-area 

design [14]. It also presents superb performance for crane 

optimization issues, for instance, the fault diagnosis of 

mobile crane [16], and the design optimization of tower 

crane hoisting system [17]. However, there is a paucity 

of related research into PSO within the context of tower 

crane lifting path optimization. 

3 System Architecture of Crane-lift Path 

Planning 

3.1 Overview 

 Given that the conventional construction practice is 

rather risky, time-consuming, and laborious when 

conducting crane-lift issues, this paper proposes a 

modified PSO algorithm to find a collision free crane-lift 

path automatically, thereby accelerating intelligence and 

automation in MiC featured projects.  

The system architecture builds on two categories of 

modeling environments and an output illustrated in 

Figure 1.  

 

 

Figure 1. The system architecture of crane-lift 

path planning 
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One is the building information modeling (BIM) 

environment comprising of an original BIM model and 

an oriented bounding box (OBB) model. Another one is 

the mathematic modeling environment that gives 

importance to crane-lift path planning. There are three 

critical components in mathematical modeling 

environment: (1) tower crane operation strategy; (2) 

loading capacity; and (3) fitness function. The output 

provides the best solution space. 

3.2 The Development of BIM Modeling 

Environment 

The BIM modeling environment provides all the 

necessary information of MiC projects. 

First, a delicate BIM model is built using various 

module families in Revit (Figure 2(a)). Second, to 

degrade computing complexity of the follow-up path 

planning issues, the original model is simplified as an 

OBB model (Figure 2(b)), which can perform more 

accurately than axis-aligned bounding box or bounding 

sphere algorithms in collision detection trials.  

 

 
Figure 2. Project modeling process 

 

Since Revit’s dedicated project file with a .RVT 

extension  is not compatible with most software, it needs 

to be converted to a more general type. In this paper, 

the .RVT file is transformed to a file with an .OBJ 

extension containing vertices and polygons of each 

component. By reading the .OBJ file in MATLAB, the 

mathematical model can be generated (Figure 2(c)). 

3.3 The Development of Mathematic 

Modeling Environment 

 The mathematic modeling environment plays a 

paramount role in finding a collision-free and high-

quality solution.  

3.3.1 Problem formulation 

Assumptions 

After conducting a critical literature review, the 

authors adopted the assumptions of Cai et al. [7], due to 

the fact that they drew upon the expertise of professionals 

and scholars. 

Degree of Freedom (DOF)  

The transmission mechanism of a hammerhead tower 

crane comprises three DOFs, i.e., jib slewing, trolley 

movement, and sling hoisting. In addition to the actuated 

system, the self-rotation angle of the lifting frame is 

another non-negligible DOF, altered manually by 

building workers. Therefore, the tower crane is specified 

to have four DOFs.  

For the convenience of research, the work space is 

converted to configuration space (C space). In C space, 

the nodes in the path are called configurations. The set of 

configurations in the solution space can be written as 𝑿. 

As a result, the configurations in the ith path is 𝑿𝒊 =
(𝑿𝒊𝟏, 𝑿𝒊𝟐, 𝑿𝒊𝟑, 𝑿𝒊𝟒) , where 𝑿𝒊𝒋  is a N-by-1 vector, 𝑖 ∈

[1,𝑀], 𝑗 ∈ [1,4], M denotes the number of paths and N 

denotes the number of configurations in each path. The 

number of columns of 𝑿𝒊  represents the degrees of 

freedom, corresponding to the self-rotation angle of the 

lifting frame (equivalent to the rotation angle of the 

module, denoted as Rotation), the slewing angle of the jib 

(denoted as Slewing), the range of trolley movement 

(denoted as Movement), and the height of the hook 

(denoted as Hoisting).  

Those nodes are connected by abstract edges (denoted 

as 𝑬, where 𝑬𝒊 ∈ 𝑬 ). In fact, the operation of the tower 

crane from one configuration to another is the edge.  

After giving the above definitions of nodes and edges, 

any path of the tower crane can be expressed as a sling, 

marked as s⊂𝑺. 𝑺 represents the solution space of all 

paths, whose expression is ruled by 

𝑺 = 𝑿 ∪ 𝑬 (1) 

Tower Crane Operation Strategy for MiC projects 

As discussed above,  (𝑿𝒊)𝟏  and (𝑿𝒊)𝑵  represent the 

start configuration and the end configuration in the ith 

path, calculated in advance. In actual crane-lift tasks, 

workers often manually rotate the module to a proper 

pose initially, and then the hook goes up. Therefore, for 

(𝑬𝒊)𝟏 , the first edge, randomly alter Rotation and 

Hoisting of each sling, while other DOFs are aligned with 

(𝑿𝒊)𝟏. When the lifting task is about to end, the hook will 

slowly descend with the hoisted module. Riggers, in the 

end, will rotate the module again, placing them to the 

demand point from a relatively fixed height. Therefore, 

this paper proposes a pseudo end configuration concept, 

that is, the end configuration of the planned path is 

always h higher than the actual one. In the case of this 

paper, the height of the module is 3150mm, so h is 

assumed as 4000mm. As a result, only stochastically 

change Rotation and Movement for (𝑬𝒊)𝑵−𝟏  and 

(𝑬𝒊)𝑵−𝟐 respectively. The purpose of not putting these 

two variables in one edge is to ensure their strict sequence. 

The parameters of in-between edges vary randomly.  

Loading Capacity and Working Radius 

Most of the existing research on tower crane lifting 

issues has neglected the correlation between modular 
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weight and working radius of the trolley. In fact, it is 

challenging to have a unified mathematical expression 

for multiple of cranes, because the mechanical principles, 

product materials, etc. of cranes normally differ from 

each other. To solve the problem, tower crane 

manufacturers give importance to pre-loading 

experiments, measuring a series of scattered working 

radius under corresponding capacities, and providing 

experimental tables for users to inquire. However, it is 

not easy to immediately receive the correct working 

radius once the value of load capacity cannot be found in 

the table. This paper leverages the cubic spline 

interpolation method to pre-process those discrete data. 

Before the algorithm is executed, the maximum working 

radius will be automatically calculated according to the 

weight of lifted modules. Figure 3, for example, exhibits 

the relationship of load capacity and the corresponding 

working radius of the 50-meter jib of the SANY SYT315 

T7530-16 model. When the input value of module weight 

is 11.85 tonnes, the algorithm will automatically 

calculate its working radius as 29.29 meters. With a 

minimum working radius of 3.5 meters, the range of the 

trolley movement is determined to be 3.5 to 29.29 meters. 

 

 
Figure 3. Load capacity diagram of 50m jib (SYT315 

T7530-16) 

3.3.2 The proposed path planning algorithm 

Introduction and Definition of PSO 

For PSO, each path s can be a representative of the 

particle in C space with 𝑁 × 4  dimensions, where N 

represents the number of configurations in a lifting path. 

As a result, the position for the ith particle is denoted as 

𝑿𝒊 = (𝑿𝒊𝟏, 𝑿𝒊𝟐, 𝑿𝒊𝟑, 𝑿𝒊𝟒) identified above, and the 

velocity for the ith particle is denoted as 𝑽𝒊 =
(𝑽𝒊𝟏, 𝑽𝒊𝟐, 𝑽𝒊𝟑, 𝑽𝒊𝟒).The best history positions of each 

particle and the whole particle swarm (i.e., the population) 

are logged and represented as 𝑷𝒊 = (𝑷𝒊𝟏, 𝑷𝒊𝟐, 𝑷𝒊𝟑, 𝑷𝒊𝟒) 
and 𝐆 = (𝒈𝟏, 𝒈𝟐, 𝒈𝟑, 𝒈𝟒) respectively. Additionally, the 

range of variables is written as 1) position: 𝐗 ∈
[−𝐗𝒎𝒊𝒏, 𝐗𝒎𝒂𝒙]; 2) velocity: 𝐕 ∈ [−𝐕𝒎𝒊𝒏, 𝐕𝒎𝒂𝒙], where 

𝐗𝒎𝒊𝒏  and 𝐗𝒎𝒂𝒙  denote the minimum and maximum 

values among various DOFs of tower crane; 𝐕𝒎𝒊𝒏  and 

𝐕𝒎𝒂𝒙  correspond to the minimum and maximum 

velocities of particles. 

The evolution of GA relies on its exclusive genetic 

operators, such as reproduction, crossover and mutation, 

while the updating process in PSO is quite different. For 

the 𝑖 th particle, in the 𝑘 th iteration, its position and 

velocity are updated as Equation (2)-(4): 

𝜔𝑘 = 𝜔𝑘−1𝜔𝑑𝑎𝑚𝑝 (2) 

𝑽𝒌
𝒊 = 𝜔𝑘𝑽𝒌−𝟏

𝒊 + 𝑐1𝒓𝟏(𝑷𝒊 −𝑿𝒌−𝟏
𝒊 ) + 𝑐2𝒓𝟐(𝑮 − 𝑿𝒌−𝟏

𝒊 ) (3) 

𝑿𝒌
𝒊 = 𝑿𝒌−𝟏

𝒊 + 𝑽𝒌
𝒊  (4) 

where 𝜔𝑘 is the inertial weight decreasing with time 

and balancing the results of global and local optimum, in 

cooperation with 𝜔𝑑𝑎𝑚𝑝 , the damping ratio of inertial 

weight denoted as 0.99 over the iterations; 𝑐1  and 𝑐2 

correspond to two positive acceleration constants; 𝒓𝟏 and 

𝒓𝟐 represent two N-by-4 matrices, where the values are 

uniformly distributed random numbers in the range [0, 1].  

The traduction of PSO in a search space mainly 

encompasses three characteristics: 1) inertial behavior, 

the first part of Equation (3), in which particles keep 

existing velocity flying; 2) personal cognition, the second 

part of Equation (3), in which the velocity of each particle 

is randomly increased to the history best solution; 3) 

social perception, the last part of Equation (3), in which 

the velocity of each particle is randomly reached the 

history optimum position of the whole population. 

Crane-lift Path Generation Mechanism 

Figure 4 shows the proposed lifting path generation 

mechanism, containing four sections, i.e., input, PSO 

path planner, auxiliary engines and output.  

The input information includes confirming the initial 

population size, the maximum number of iterations, the 

number of configurations, and various coefficients’ 

values. During the path planner execution, it is necessary 

to calculate the fitness function value to evaluate the 

particle’s personal and global best outputs and update the 

particle swarm position and velocity. When PSO reaches 

the maximum generation, it stops running, performing 

postprocessing analysis accordingly. Also, the auxiliary 

engines play a vital role over the iterations. The model 

regeneration engine assists in creating the mathematical 

model in MATLAB; then, the crane configuration engine 

will import the required crane particulars to PSO. In the 

algorithm iteration process, the collision detection engine 

will be called all the time to detect constraint points. 
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Figure 4. The proposed path generation mechanism 

Fitness Function 

The modified fitness functions contain three metrics. 

To receive a more realistic result, the metric 𝑟1 is written 

as: 

𝑟1(𝒎, 𝒏) =∑𝜌𝑖|𝑚𝑖 − 𝑛𝑖|

4

𝑖=1

 (5) 

where 𝒎 and 𝒏 are two adjacent configurations in C 

space; 𝑚𝑖 and 𝑛𝑖 correspond to each DOF of 𝒎 and 𝒏; a 

velocity influencing factor 𝜌𝑖  is devised, 𝜌𝑖 =
1

𝑣𝑖
 , 𝒗 =

(𝑣1, 𝑣2, 𝑣3, 𝑣4) = (𝑣𝑙𝑓 , 𝑣𝑗𝑏 , 𝑣𝑙𝑑 , 𝑣𝑠𝑙) , representing the 

velocities of module rotation, jib slewing, module 

movement and sling hoisting respectively. The last three 

parameters are the tower crane’s transmission 

mechanism provided by vendors in advance. In contrast, 

the first parameter is determined by riggers’ operational 

practice, which means that it is hard to give a specific 

data range. Its research is out of the scope of the current 

research, temporarily assumed as the same value of 

Slewing after the interview with crane operators. Taking 

SANY SYT315 as an example, 𝑣𝑗𝑏 =  0.75r/min (i.e. 

0.079rad/s), 𝑣𝑙𝑑 =  100m/min (i.e. 1666.66mm/s) and 

𝑣𝑠𝑙 = 𝑣𝑙𝑓 = 80m/min (i.e. 1333.33mm/s). As a result, the 

metric 𝑟1 can be utilized to calculate exactly lifting time. 

The metric 𝑟2  is used for computing the movement 

distance, in accordance with crane’s operation strategy, 

which is ruled by 

𝑟2(𝒎, 𝒏)

=

{
 
 

 
 |𝑚2 − 𝑛2| ∙ |𝑚3| +∑|𝑚𝑖 − 𝑛𝑖|  𝑖𝑓𝑚4 < 𝑛4

4

𝑖=3

|𝑚2 − 𝑛2| ∙ |𝑛3| +∑|𝑚𝑖 − 𝑛𝑖|    

4

𝑖=3

𝑖𝑓𝑚4 > 𝑛4

 
(6) 

where 𝑚4  and 𝑛4  represent Hoisting. If 𝑚4 < 𝑛4 , 

this means the position of configuration 𝒎 is lower than 

𝒏; otherwise, higher. 

The metric 𝑟3 is devised for collision detection, which 

is denoted as 

𝑟3((𝑬
𝒊)𝒋) = {

1  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1 
0  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2

 (7) 

where the condition 1 means the lifted module 

collides with obstacles and the condition 2 means the 

lifting process is collision avoidance. (𝑬𝒊)𝒋 represents the 

jth edge in the ith path. This paper adopted OBB 

algorithm for crane-lift collision detection. 

Based on the above three metrics, a modified fitness 

function is determined as follows: 

𝐹(𝑠) = 𝛼𝑡(𝑠) + 𝛽𝑑(𝑠) + 𝛾𝑐(𝑠) (8) 

where, 

𝛾 ≫ 𝛼, 𝛽,  𝑡(𝑠) = ∑ 𝑟1((𝑿
𝒊)𝒋, (𝑿𝒊)𝒋+𝟏)𝑁−1

𝑗=1  

𝑑(𝑠) = ∑ 𝑟2((𝑿
𝒊)𝒋, (𝑿𝒊)𝒋+𝟏)𝑁−1

𝑗=1 , 𝑐(𝑠) = ∑ 𝑟3((𝑬
𝒊)𝒋)𝑁−1

𝑗=1 .   

Therefore, the issue of finding a collision-free lifting 

path in C space is transformed to calculate the minimum 

value of 𝐹(𝑠). 𝛼 and 𝛽  are two influencing factors for 

weighting hoisting time and the movement distance of 

the tower crane, respectively. To some extent, the first 

metric is to guarantee that the time is as short as possible. 

The second metric is to ensure that the movement of the 

tower crane is reduced as much as possible during the 

installation process. There are two purposes for this. One 

is to reduce energy consumption and save costs; the other 

is to reduce the redundancy of the algorithm and enhance 

the operational space for tower crane operators. 

Furthermore, the influencing factor 𝛾  of the third 

metric is much larger than the first two, which ensures 

that sufficient punishment is imposed to accelerate the 

elimination of the collision points in the event of a 

collision.  

4 Case Study 

A real-life MiC project was selected to demonstrate 

the proposed method and to test the performance of the 

revised PSO algorithm. The case project is a student 

residence with more than 900 steel-framed modules, and 

the project is currently under construction. 

4.1 Parameter initialization 

The initialization data of the tower crane and PSO are 

shown in Table 1 and Table 2. 
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Table 1 Tower crane specifications (SANY: SYT315 

T7530-16) 

Parameter Input value 

X1 (-1.3089, 2.6275, 27988, 0) 

X𝑒𝑛𝑑 (-3.0618, 0.8924, 17678, 37500) 

X𝑚𝑖𝑛 (-3.1416, -3.1416, 3500, 0) 

X𝑚𝑎𝑥  (3.1416, 3.1416, 29294, 50000) 

𝑣𝑗𝑏  0.06 

𝑣𝑙𝑓 0.06 

𝑣𝑙𝑑  1000 

𝑣𝑠𝑙  500 

𝑊𝑚 11.85 

Note: The underlined fonts indicate that precomputation 

is required for calculating the maximum working radius. 

Table 2 PSO parameters 

Parameter Input value 

N 6 

M 50 

𝜔 1 

𝜔𝑑𝑎𝑚𝑝  0.99 

𝑐1 1.5 

𝑐2 2 

𝛼 1 

𝛽 0.01 

𝛾 10000 

4.2 Analysis and Postprocessing 

To verify the applicability of the proposed algorithm, 

this paper sets the population size to 50, and the 

independent variable is the evolutionary generation, i.e., 

maximum iteration, ranging from 30 to 350. This study 

determined ten different scenarios according to the above 

interval and ran each one independently 30 times. Table 

3 recorded the simulation results, where G  means the 

maximum evolutionary generation in each scenario; N𝑔 

represents the number of minimum global cost over 30 

runs; G𝑠 represents the start generation of the minimum 

cost (if N𝑔 is larger than one, calculate the average start 

generation); N𝑙 = G − G𝑠, represents the average number 

of minimum local cost over the generations; R𝑐𝑜𝑛 =
N𝑙/G  represents the convergence rate; R𝑏𝑒𝑠𝑡 = N𝑔/30 

represents the occurrence rate of the global minimum 

cost over the runs; C𝑚𝑖𝑛 , C𝑚𝑎𝑥 , C𝑎𝑣𝑒  represent the 

minimum, maximum and average cost of all the minima 

over 30 runs. 

 

The proposed algorithm shows better explore-exploit 

trade-off according to the experiment results. When the 

population has only evolved for 30 generations, i.e., 

Scenario 1, it is relatively close to convergence. Among 

the 30 optimal costs in this scenario, the minimum, 

maximum, and average values are only 0.2411%, 

7.7952%, and 1.9014% larger than the global optimum 

whose value is 952.8613 (Table 3), respectively. N𝑙, R𝑐𝑜𝑛 

and R𝑏𝑒𝑠𝑡  increase steadily with the increase of 

evolutionary generation, indicating that the algorithm is 

accelerating convergence, as shown in Figure 5(a) and 

(b). Additionally, the convergence solution of the 

algorithm remains unchanged when the generations are 

more than 100, indicating that the proposed algorithm is 

highly stable, as shown in Figure 5(c). When the 

maximum iteration reaches 300, the convergence 

solutions of 30 independent runs have up to 26 times, and 

the trend of change is shown in Figure 5(b).    

Table 3 Experiment results among ten scenarios 

Scenario G G𝑠 N𝑙  R𝑐𝑜𝑛 N𝑔 R𝑏𝑒𝑠𝑡  C𝑚𝑎𝑥 C𝑚𝑖𝑛 C𝑎𝑣𝑒 

1 30 - - - 1 3.33% 1027.1385 955.1588 970.9793 

2 50 - - - 1 3.33% 981.9662 952.9122 959.4187 

3 80 - - - 1 3.33% 1017.2713 952.8614 958.4079 

4 100 87 14 14.00% 1 3.33% 978.0376 952.8613 963.03 

5 150 92 59 39.33% 3 10.00% 1017.2608 952.8613 960.1404 

6 180 90.7 90.3 50.17% 10 33.33% 1017.2608 952.8613 955.8471 

7 200 94.6364 106.3636 53.18% 11 36.67% 1017.2608 952.8613 959.2038 

8 250 111.9565 139.0435 55.62% 23 76.67% 1017.2608 952.8613 960.5113 

9 300 108.7692 192.2308 64.08% 26 86.67% 978.0366 952.8613 957.8964 

10 350 109.1852 241.8148 69.09% 27 90.00% 978.0366 952.8613 955.3788 
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(a) The line chart of convergence rate and best rate 

 
(b) The line chart of start generation and minimum cost 

amount 

 
(c) The line chart of minimum, maximum and average 

cost 

Figure 5. Data visualization among various evolutionary 

generations 

 

Figure 6 plots the crane-lift path trajectory of 

Scenario 9. The crane-lift trajectory is visualized in 

mathematic modeling environment, whose lifting path is 

smooth and easy to operate. Plus, Figure 7 depicts the 

convergence curve of Scenario 9, which manifests PSO 

reaches its optimal value quickly. Therefore, the 

modified PSO can obtain a better solution space with 

only a small population size and evolutionary generation. 

 

 

Figure 6. Crane-lift path trajectory visualization in 

mathematic modeling environment 

 

 
Figure 7. PSO convergence curve of Scenario 9 

5 Discussion 

For the sake of a most awesome optimization 

performance, a well-designed fitness function is treated 

as a paramount issue. Cai et al. [7] once improved an 

evaluation function, which was first created and 

exhibited by Ali et al. [6] in 2005. In Cai’s new function, 

they introduced a metric that indicates the total variations 

of all configurations. Although they realized the impact 

of scaling factors on final performance over the iteration 

loop, those coefficients are determined basically on their 

own knowledge and experience. Therefore, in the similar 

metric of this paper, the undetermined factors are equal 

to the reciprocal of the actual velocity of corresponding 

DOF, so that an accurate minimum hoisting time can be 

acquired.  

In relation to the convergence characteristics of PSO, 

it outperforms GA, while the time complexity is 

unchanged. Cai [7] used GA for crane-lift path planning. 

The convergence condition of their algorithm is that the 

population size is 100 and the evolutionary generation is 

400, but the corresponding numbers are 50 and 100, 

respectively in the proposed algorithm. 

Furthermore, the path smoothness is a significant 

benchmark for verifying solution quality. Nevertheless, 

most of the existing lifting trajectories are redundant. For 

example, Wang et al. [12] used ACO for mobile crane 

path planning, but the visualization result illustrated that 

there were multiple turns and twists in the trajectory. In 

comparison, the lifting trajectory is extremely smooth in 

the developed architecture (see Figure 6). 

6 Conclusions 

This paper has proposed a modified PSO algorithm to 

automatically conduct crane-lift path planning for high-

rise MiC. This research is the first of its kind to introduce 

PSO for crane-lift path planning, and is an initial and 

successful attempt of planning crane-lift path in MiC 

projects. The paper concludes that the proposed 

algorithm can generate a collision-free crane-lift path 

with a small population size and a few iterations for 
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module installation. Also, the lifting trajectory is found 

to be smooth and easy-to-operate. 

Practically, this paper should assist construction 

planners and crane operators in identifying an optimal 

crane-lift path, thus facilitating safe and efficient MiC 

project delivery. Scientifically, the paper contributes to 

the theoretical development of smart and automated 

technologies and algorithms in construction. In the future, 

the research will give importance to multiple-crane path 

planning in the dynamic environment.  
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